Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.651
Filtrar
1.
Cell Commun Signal ; 22(1): 212, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566100

RESUMO

The pathogenesis of Parkinson's disease (PD) is strongly associated with neuroinflammation, and type I interferons (IFN-I) play a crucial role in regulating immune and inflammatory responses. However, the specific features of IFN in different cell types and the underlying mechanisms of PD have yet to be fully described. In this study, we analyzed the GSE157783 dataset, which includes 39,024 single-cell RNA sequencing results for five PD patients and six healthy controls from the Gene Expression Omnibus database. After cell type annotation, we intersected differentially expressed genes in each cell subcluster with genes collected in The Interferome database to generate an IFN-I-stimulated gene set (ISGs). Based on this gene set, we used the R package AUCell to score each cell, representing the IFN-I activity. Additionally, we performed monocle trajectory analysis, and single-cell regulatory network inference and clustering (SCENIC) to uncover the underlying mechanisms. In silico gene perturbation and subsequent experiments confirm NFATc2 regulation of type I interferon response and neuroinflammation. Our analysis revealed that microglia, endothelial cells, and pericytes exhibited the highest activity of IFN-I. Furthermore, single-cell trajectory detection demonstrated that microglia in the midbrain of PD patients were in a pro-inflammatory activation state, which was validated in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model as well. We identified transcription factors NFATc2, which was significantly up-regulated and involved in the expression of ISGs and activation of microglia in PD. In the 1-Methyl-4-phenylpyridinium (MPP+)-induced BV2 cell model, the suppression of NFATc2 resulted in a reduction in IFN-ß levels, impeding the phosphorylation of STAT1, and attenuating the activation of the NF-κB pathway. Furthermore, the downregulation of NFATc2 mitigated the detrimental effects on SH-SY5Y cells co-cultured in conditioned medium. Our study highlights the critical role of microglia in type I interferon responses in PD. Additionally, we identified transcription factors NFATc2 as key regulators of aberrant type I interferon responses and microglial pro-inflammatory activation in PD. These findings provide new insights into the pathogenesis of PD and may have implications for the development of novel therapeutic strategies.


Assuntos
Interferon Tipo I , Neuroblastoma , Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Análise de Célula Única , Camundongos Endogâmicos C57BL
2.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575601

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Sinucleinopatias , Animais , Humanos , Camundongos , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
3.
Front Immunol ; 15: 1349030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590523

RESUMO

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Assuntos
Doença de Parkinson , Retroelementos , Humanos , Retroelementos/genética , Doença de Parkinson/genética , Dopamina , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Genótipo
4.
J Neurosci Res ; 102(4): e25321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588013

RESUMO

Neurodegenerative diseases are progressive disorders characterized by synaptic loss and neuronal death. Optogenetics combines optical and genetic methods to control the activity of specific cell types. The efficacy of this approach in neurodegenerative diseases has been investigated in many reviews, however, none of them tackled it systematically. Our study aimed to review systematically the findings of optogenetics and its potential applications in animal models of chronic neurodegenerative diseases and compare it with deep brain stimulation and designer receptors exclusively activated by designer drugs techniques. The search strategy was performed based on the PRISMA guidelines and the risk of bias was assessed following the Systematic Review Centre for Laboratory Animal Experimentation tool. A total of 247 articles were found, of which 53 were suitable for the qualitative analysis. Our data revealed that optogenetic manipulation of distinct neurons in the brain is efficient in rescuing memory impairment, alleviating neuroinflammation, and reducing plaque pathology in Alzheimer's disease. Similarly, this technique shows an advanced understanding of the contribution of various neurons involved in the basal ganglia pathways with Parkinson's disease motor symptoms and pathology. However, the optogenetic application using animal models of Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis was limited. Optogenetics is a promising technique that enhanced our knowledge in the research of neurodegenerative diseases and addressed potential therapeutic solutions for managing these diseases' symptoms and delaying their progression. Nevertheless, advanced investigations should be considered to improve optogenetic tools' efficacy and safety to pave the way for their translatability to the clinic.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Optogenética/métodos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/tratamento farmacológico , Encéfalo/fisiologia , Gânglios da Base , Doença de Parkinson/genética
5.
Biol Pharm Bull ; 47(4): 827-839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599826

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.


Assuntos
Alcaloides de Berberina , Berberina/análogos & derivados , Neuroblastoma , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Coptis chinensis , Neurônios Dopaminérgicos/metabolismo , Rizoma , Estudos de Casos e Controles , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Mutação
6.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1318-1326, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621979

RESUMO

In order to study the neuroprotective mechanism of cinnamaldehyde on reserpine-induced Parkinson's disease(PD) rat models, 72 male Wistar rats were randomly divided into blank group, model group, Madopar group, and cinnamaldehyde high-, medium-, and low-dose groups. Except for the blank group, the other groups were intraperitoneally injected with reserpine of 0.1 mg·kg~(-1) once every other morning, and cinnamaldehyde and Madopar solutions were gavaged every afternoon. Open field test, rotarod test, and oral chewing movement evaluation were carried out in the experiment. The brain was taken and fixed. The positive expression of dopamine receptor D1(DRD1) was detected by TSA, and the changes in neurotransmitters such as dopamine(DA) and 3,4-dihydroxyphenylacetic acid(DOPAC) in the brain were detected by enzyme-linked immunosorbent assay(ELISA). The protein and mRNA expression levels of tyrosine hydroxylase(TH) and α-synuclein(α-Syn) in substantia nigra(SN) were detected by RT-PCR and Western blot. The results showed that after the injection of reserpine, the hair color of the model group became yellow and dirty; the arrest behavior was weakened, and the body weight was reduced. The spontaneous movement and exploration behavior were reduced, and the coordination exercise ability was decreased. The number of oral chewing was increased, but the cognitive ability was decreased, and the proportion of DRD1 positive expression area in SN was decreased. The expression of TH protein and mRNA was down-regulated, and that of α-Syn protein and mRNA was up-regulated. After cinnamaldehyde intervention, it had an obvious curative effect on PD model animals. The spontaneous movement behavior, the time of staying in the rod, the time of movement, the distance of movement, and the number of standing times increased, and the number of oral chewing decreased. The proportion of DRD1 positive expression area in SN increased, and the protein and mRNA expression levels of α-Syn were down-regulated. The protein and mRNA expression levels of TH were up-regulated. In addition, the levels of DA, DOPAC, and homovanillic acid(HVA) neurotransmitters in the brain were up-regulated. This study can provide a new experimental basis for clinical treatment and prevention of PD.


Assuntos
Acroleína/análogos & derivados , Doença de Parkinson , Ratos , Masculino , Animais , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Reserpina/efeitos adversos , Reserpina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ratos Wistar , Substância Negra/metabolismo , RNA Mensageiro/metabolismo , Neurotransmissores/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612708

RESUMO

Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.


Assuntos
Melanoma , Melatonina , Doença de Parkinson , Humanos , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Citoplasma , Fatores de Crescimento Neural
8.
PLoS One ; 19(4): e0299898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626069

RESUMO

INTRODUCTION: Parkinson's disease (PD) is the second most common worldwide age-related neurodegenerative disorder without effective treatments. Cuproptosis is a newly proposed conception of cell death extensively studied in oncological diseases. Currently, whether cuproptosis contributes to PD remains largely unclear. METHODS: The dataset GSE22491 was studied as the training dataset, and GSE100054 was the validation dataset. According to the expression levels of cuproptosis-related genes (CRGs) and differentially expressed genes (DEGs) between PD patients and normal samples, we obtained the differentially expressed CRGs. The protein-protein interaction (PPI) network was achieved through the Search Tool for the Retrieval of Interacting Genes. Meanwhile, the disease-associated module genes were screened from the weighted gene co-expression network analysis (WGCNA). Afterward, the intersection genes of WGCNA and PPI were obtained and enriched using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the key genes were identified from the datasets. The receiver operating characteristic curves were plotted and a PPI network was constructed, and the PD-related miRNAs and key genes-related miRNAs were intersected and enriched. Finally, the 2 hub genes were verified via qRT-PCR in the cell model of the PD and the control group. RESULTS: 525 DEGs in the dataset GSE22491 were identified, including 128 upregulated genes and 397 downregulated genes. Based on the PPI network, 41 genes were obtained. Additionally, the dataset was integrated into 34 modules by WGCNA. 36 intersection genes found from WGCNA and PPI were significantly abundant in 7 pathways. The expression levels of the genes were validated, and 2 key genes were obtained, namely peptidase inhibitor 3 (PI3) and neuroserpin family I member 1 (SERPINI1). PD-related miRNAs and key genes-related miRNAs were intersected into 29 miRNAs including hsa-miR-30c-2-3p. At last, the qRT-PCR results of 2 hub genes showed that the expressions of mRNA were up-regulated in PD. CONCLUSION: Taken together, this study demonstrates the coordination of cuproptosis in PD. The key genes and miRNAs offer novel perspectives in the pathogenesis and molecular targeting treatment for PD.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , Doença de Parkinson/genética , MicroRNAs/genética , Morte Celular , Biologia Computacional , Grupos Controle
9.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627765

RESUMO

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Camundongos , Animais , Dopamina/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Doença de Parkinson/genética , Mitocôndrias , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Modelos Animais de Doenças
10.
PLoS Biol ; 22(4): e3002559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652714

RESUMO

Increasing evidence indicates that terminally differentiated neurons in the brain may recommit to a cell cycle-like process during neuronal aging and under disease conditions. Because of the rare existence and random localization of these cells in the brain, their molecular profiles and disease-specific heterogeneities remain unclear. Through a bioinformatics approach that allows integrated analyses of multiple single-nucleus transcriptome datasets from human brain samples, these rare cell populations were identified and selected for further characterization. Our analyses indicated that these cell cycle-related events occur predominantly in excitatory neurons and that cellular senescence is likely their immediate terminal fate. Quantitatively, the number of cell cycle re-engaging and senescent neurons decreased during the normal brain aging process, but in the context of late-onset Alzheimer's disease (AD), these cells accumulate instead. Transcriptomic profiling of these cells suggested that disease-specific differences were predominantly tied to the early stage of the senescence process, revealing that these cells presented more proinflammatory, metabolically deregulated, and pathology-associated signatures in disease-affected brains. Similarly, these general features of cell cycle re-engaging neurons were also observed in a subpopulation of dopaminergic neurons identified in the Parkinson's disease (PD)-Lewy body dementia (LBD) model. An extended analysis conducted in a mouse model of brain aging further validated the ability of this bioinformatics approach to determine the robust relationship between the cell cycle and senescence processes in neurons in this cross-species setting.


Assuntos
Envelhecimento , Doença de Alzheimer , Encéfalo , Ciclo Celular , Senescência Celular , Neurônios , Animais , Humanos , Senescência Celular/genética , Encéfalo/metabolismo , Encéfalo/patologia , Envelhecimento/fisiologia , Envelhecimento/genética , Ciclo Celular/genética , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Transcriptoma/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Perfilação da Expressão Gênica , Masculino , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Camundongos Endogâmicos C57BL , Idoso
11.
PLoS One ; 19(4): e0298778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568911

RESUMO

BACKGROUND: Previous observational studies have reported an association between Sjögren's syndrome (SS) and an increased risk of Parkinson's Disease (PD). However, the causal relationship between these conditions remains unclear. The objective of this study was to investigate the causal impact of SS on the risk of developing PD, utilizing the Mendelian randomization (MR) approach. METHODS: We conducted a bidirectional MR analysis using publicly available genome-wide association studies (GWAS) data. The primary analysis utilized the inverse-variance weighted (IVW) method. Complementary methods, such as MR-Egger regression, weighted mode, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO), were utilized to identify and correct for the presence of horizontal pleiotropy. RESULTS: The IVW MR analysis revealed no significant association between SS and PD (IVW: OR = 1.00, 95% CI = 0.94-1.07, P = 0.95). Likewise, the reverse MR analysis did not identify any significant causal relationship between PD and SS (IVW: OR = 0.98, 95% CI = 0.85-1.12, P = 0.73). The results from MR-Egger regression, weighted median, and weighted mode approaches were consistent with the IVW method. Sensitivity analyses suggested that horizontal pleiotropy is unlikely to introduce bias to the causal estimates. CONCLUSION: This study does not provide evidence to support the assertion that SS has a conclusive impact on the risk of PD, which contradicts numerous existing observational reports. Further investigation is necessary to determine the possible mechanisms behind the associations observed in these observational studies.


Assuntos
Doença de Parkinson , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Parkinson/genética
13.
CNS Neurosci Ther ; 30(3): e14680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529533

RESUMO

BACKGROUND: Differences in cortical morphology have been reported in individuals with Parkinson's disease (PD). However, the pathophysiological mechanism of transcriptomic vulnerability in local brain regions remains unclear. OBJECTIVE: This study aimed to characterize the morphometric changes of brain regions in early drug-naive PD patients and uncover the brain-wide gene expression correlates. METHODS: The morphometric similarity (MS) network analysis was used to quantify the interregional structural similarity from multiple magnetic resonance imaging anatomical indices measured in each brain region of 170 early drug-naive PD patients and 123 controls. Then, we applied partial least squares regression to determine the relationship between regional changes in MS and spatial transcriptional signatures from the Allen Human Brain Atlas dataset, and identified the specific genes related to MS differences in PD. We further investigated the biological processes by which the PD-related genes were enriched and the cellular characterization of these genes. RESULTS: Our results showed that MS was mainly decreased in cingulate, frontal, and temporal cortical areas and increased in parietal and occipital cortical areas in early drug-naive PD patients. In addition, genes whose expression patterns were associated with regional MS changes in PD were involved in astrocytes, excitatory, and inhibitory neurons and were functionally enriched in neuron-specific biological processes related to trans-synaptic signaling and nervous system development. CONCLUSIONS: These findings advance our understanding of the microscale genetic and cellular mechanisms driving macroscale morphological abnormalities in early drug-naive PD patients and provide potential targets for future therapeutic trials.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/complicações , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/patologia , Perfilação da Expressão Gênica
14.
Zhen Ci Yan Jiu ; 49(3): 256-264, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500322

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) on behavior, oxidative stress factors in colon and substantia nigra of Parkinson's disease (PD) mice, so as to explore the mechanism of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into blank, model and EA groups, with 12 mice in each group. The PD mouse model was established by continuous gavage of rotenone for 4 weeks. Mice in the EA group received EA (2 Hz/15 Hz) at "Baihui" (GV20), "Quchi" (LI11) and "Zusanli" (ST36) for 20 min, 5 days a week for 2 weeks. After intervention, gait analysis was used to evaluate the motor ability and motor coordination. Ink propulsion rate was used to evaluate the intestinal transport function. The level of reactive oxygen species (ROS) in the colon was detected by flow cytometry. The contents of total protein (TP), malondialdehyde (MDA) and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) in colon and substantia nigra were detected by ELISA. The expression of nuclear factor E2-related factor 2 (Nrf2) in substantia nigra was detected by immunofluorescence staining. RESULTS: Compared with the blank group, the average speed, step rate, normal step ratio, distance between the front and hind feet, stride length, swing speed and maximum intensity of the maximum contact area of mice in the model group were decreased (P<0.000 1, P<0.01, P<0.001), the maximum change rate of gait was increased (P<0.001) in the model group. The intestinal propulsion rate, the activities of GSH-Px and SOD in the colon and substantia nigra, and the positive expression of Nrf2 in substantia nigra were decreased (P<0.000 1, P<0.01, P<0.05), while the fluorescence intensity of ROS in the colon, the contents of MDA in colon and substantia nigra were increased (P<0.01). Compared with the model group, the average speed, step rate, normal step ratio, distance between the front and hind feet, stride length, swing speed, and maximum intensity of the maximum contact area of the mice in the EA group were increased (P<0.01, P<0.05, P<0.001, P<0.000 1), the maximum change rate of gait was decreased (P<0.01). The intestinal propulsion rate, the activities of GSH-Px and SOD in the colon and substantia nigra, the positive expression of Nrf2 in substantia nigra were increased (P<0.001, P<0.05, P<0.000 1), while the ROS fluorescence intensity in the colon, the MDA contents in the colon and substantia nigra were decreased (P<0.01). CONCLUSIONS: EA can improve the movement disorder, gait disorder and intestinal motor function of PD mice, and protect dopaminergic neurons from damage, which may be related to its effect in antagonistic brain-gut oxidative stress.


Assuntos
Eletroacupuntura , Doença de Parkinson , Ratos , Camundongos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Substância Negra/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Anticorpos
15.
Zhen Ci Yan Jiu ; 49(3): 221-230, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500318

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Fengfu"(GV16), "Taichong"(LR3), and "Zusanli"(ST36) on mitophagy mediated by silencing regulatory protein 3 (SIRT3)/ PTEN induced putative kinase 1 (PINK1)/PARK2 gene coding protein (Parkin) in the midbrain substantia nigra of Parkinson's disease (PD) mice, and to explore the potential mechanisms of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into the control, model, EA, and sham EA groups, with 12 mice in each group. The PD mouse model was established by intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). The EA group received EA stimulation at GV16, LR3 and ST36, while the sham EA group received shallow needling 1 mm away from the above acupoints without electrical stimulation. The motor ability of mice in each group was evaluated using an open field experiment. Immunohistochemistry was used to detect the expression of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the substantia nigra of mice. The ultrastructure of neurons in substantia nigra was observed by transmission electron microscope (TEM). Immunofluorescence was used to detect the expression of the autophagy marker autophagy-associated protein light chain 3 (LC3). The expression levels of TH, α-syn, SIRT3, PINK1, Parkin, P62, Beclin-1, LC3Ⅱ mRNA and protein were detected by PCR and Western blot. RESULTS: Compared with the control group, mice in the model group showed a decrease in the total exercise distance, time, movement speed and times of crossing central region (P<0.01);the positive expressions of TH and LC3 were decreased (P<0.01), while the positive expression of α-syn increased (P<0.01), accompanied by mitochondrial swelling, mitochondrial cristae fragmentation and decrease, and decreased lysosome count;the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1, and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were decreased (P<0.01), while the expression levels of α-syn and P62 mRNA and protein were increased (P<0.01, P<0.05). Compared with the model group, the mice in EA group showed a significant increase in the total exercise distance, time, movement speed and times of crossing central region (P<0.01, P<0.05);the positive expressions of TH and LC3 were increased (P<0.01, P<0.05), while the positive expression of α-syn was decreased (P<0.01), accompanied by an increase in mitochondrial count, appearance of autophagic va-cuoles, and a decrease in swelling, the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1 and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were increased (P<0.01, P<0.05), while the mRNA and protein expression levels of α-syn and P62 were decreased (P<0.01);the sham EA group showed an increase in the total exercise distance and time(P<0.05), with an increase in the positive expression of TH (P<0.05) and a decrease in the positive expression of α-syn (P<0.05);some mitochondria exhibited swelling, and no autophagic vacuoles were observed;the protein expression levels of TH, SIRT3, Parkin and LC3Ⅱ were increased (P<0.01, P<0.05), and the expression levels of P62 mRNA, α-syn mRNA and protein were decreased (P<0.01, P<0.05), and LC3Ⅱ mRNA expression was increased (P<0.05). In comparison to the sham EA group, the EA group showed an extension in the total exercise time (P<0.01), the positive expression and mRNA expression levels of α-syn were decreased (P<0.01, P<0.05), while the expression levels of TH, SIRT3, PINK1, Parkin mRNA and SIRT3 protein were increased (P<0.05). CONCLUSIONS: EA at GV16, LR3, and ST36 can exert neuroprotective function and improve the motor ability of PD mice by activating the SIRT3/PINK1/Parkin pathway to enhance the expression of TH and reduce α-syn aggregation in the substantia nigra of PD mice.


Assuntos
Eletroacupuntura , Doença de Parkinson , Sirtuína 3 , Camundongos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Sirtuína 3/genética , Mitofagia/genética , Proteínas Quinases/genética , Proteína Beclina-1 , Camundongos Endogâmicos C57BL , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , RNA Mensageiro
16.
Genes (Basel) ; 15(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540341

RESUMO

Heterozygous carriers of the glucocerebrosidase 1 (GBA) L444P Gaucher mutation have an increased risk of developing Parkinson's disease (PD). The GBA mutations result in elevated alpha synuclein (aSyn) levels. Heterozygous mice carrying one allele with the L444P mutation knocked-into the mouse gene show increased aSyn levels and are more sensitive to motor deficits following exposure to the neurotoxin (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP than wild-type mice. Paraquat (PQ), a herbicide, increases PD risk in most studies. Its effects on the brain involve alterations in the gut microbiome. Exposure to dextran sulfate sodium (DSS), a mouse model of colitis, can be used to determine whether gut microbiome alterations are sufficient to induce PD-relevant phenotypes. We rederived the A53T-L444P and A53T mouse lines to assess whether PQ, PQ in combination with radiation exposure (IR), and DSS have differential effects in A53T and A53T-L444P mice and whether these effects are associated with alterations in the gut microbiome. PQ and PQ + IR have differential effects in A53T and A53T-L444P mice. In contrast, effects of DSS are only seen in A53T-L444P mice. Exposure and genotype modulate the relationship between the gut microbiome and behavioral performance. The gut microbiome may be an important mediator of how environmental exposures or genetic mutations yield behavioral and cognitive impacts.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Paraquat/toxicidade , Sulfato de Dextrana , Doença de Parkinson/genética , Glucosilceramidase/genética , Cognição
17.
Cell Mol Life Sci ; 81(1): 135, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478096

RESUMO

Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Qualidade de Vida , Gânglios da Base/fisiologia , Substância Negra
20.
Sci Rep ; 14(1): 7256, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538647

RESUMO

Body mass index (BMI) is a crucial health indicator for obesity. With the progression of socio-economic status and alterations in lifestyle, an increasing number of global populations are at risk of obesity. Given the complexity and severity of neurological diseases, early identification of risk factors is vital for the diagnosis and prognosis of such diseases. In this study, we employed Mendelian randomization (MR) analysis utilizing the most comprehensive genome-wide association study (GWAS) data to date. We selected single nucleotide polymorphisms (SNPs) that are unaffected by confounding factors and reverse causality as instrumental variables. These variables were used to evaluate the genetic and causal relationships between Body Mass Index (BMI) and various neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Ischemic Stroke (IS), and Epilepsy (EP). The Inverse Variance Weighted (IVW) analysis indicated that there was no significant causal relationship between Body Mass Index (BMI) indicators and PD (P-value = 0.511), AD (P-value = 0.076), ALS (P-value = 0.641), EP (P-value = 0.380). However, a causal relationship was found between BMI indicators and MS (P-value = 0.035), and IS (P-value = 0.000), with the BMI index positively correlated with the risk of both diseases. The Cochran's Q test for MR-IVW showed no heterogeneity in the MR analysis results between the BMI index and the neurological diseases (P > 0.05). The Egger intercept test for pleiotropy revealed no horizontal pleiotropy detected in any of the neurological diseases studied (P > 0.05). It was found that there was no causal relationship between BMI and PD, AD, ALS, EP, and a genetic causal association with MS, and IS. Meanwhile, the increase in BMI can lead to a higher risk of MS and IS, which reveals the critical role of obesity as a risk factor for specific neurological diseases in the pathogenesis of the diseases.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , AVC Isquêmico , Esclerose Múltipla , Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , Índice de Massa Corporal , Esclerose Amiotrófica Lateral/genética , Estudo de Associação Genômica Ampla , Doenças do Sistema Nervoso/genética , Doença de Parkinson/genética , Esclerose Múltipla/genética , Doença de Alzheimer/genética , Análise da Randomização Mendeliana , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...